Computer Algebra Systems Activity: Patterning

© R. Meisel, Feb 15, 2005 rollym@vaxxine.com

Topic: Patterning and Algebra

Ontario Expectations: (To be added when finalized by MOE.)

Notes to the Teacher:

- a) This activity is designed to use the CAS on the TI-89 calculator to enhance understanding and instruction. Other CAS systems may be used in place of the TI-89. All screen shots are from the TI-89.
- b) The activity is presented in a Teacher Version, with all screen shots and solutions present, as well as a Student Version, which can be duplicated and handed out to students.
- c) This material may be used freely by teachers in their classrooms. The copyright message must not be removed. Any other use or publication without the consent of the author is a breach of copyright.

Teacher Version:

Introduction: Patterns that occur in series of numbers can be determined with pencil and paper or the use of a simple calculator. However, CAS allows you to verify that your pattern will work for an infinite series. In this exercise, you will use your calculator to help you find a pattern, and then use CAS to show whether the pattern works regardless of the beginning number chosen.

- 1. Find the product of the integers from 1 to 4. Then, find the product of the integers 2 to 5. Continue, starting one integer higher each time, until you have five products. Display your results in a table.
- 2. Look for a pattern in your results. Ensure that each of your results matches the pattern. Then, continue for three more steps, and check the pattern. (Hint: If you can't find a pattern, decode this message by replacing each letter with the one before it in the

alphabet: "dpotjefs trvbsft pg joufhfst"

F1+ F2+ Tools A19eb	F3+ F4+ ra Ca1c Other F	F5 F6 r9ml0 C1ea	
■ 1·2·3	4		24
■ 2.3.4	-5		120
■3·4·5	-6		360
■ 4·5·6·	·7		840
■ 5·6·7·	8		1680
5*6*7*8	RAD AUTO	FIINC	5/30
F1+ F2+ Tools #19eb	F3+ F4+ ra Ca1c Other F	F5 F6 r9ml0Clea	n Up
F1+ F2+ T001s A19eb		FS F6 'r9mIO C1ea	ո Սբ 25
		F5 F6 r9m10 C1ea	n UP
■5 ²		FS F6 r9ml0 Clea	25
•5 ²		F5 F6 r9ml0 Clea	25 121

[Answer: each number is one less than the square of an integer. The base follows the pattern 5 + 2(x - 1), where x is the term number.]

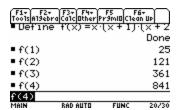
3. For the first term, the product is $1\times2\times3\times4$. Write an expression for the product of the x^{th} term.

[Answer:
$$x(x + 1)(x + 2)(x + 3)$$
]

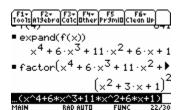
4. Add 1 to this expression.

[Answer:
$$x(x + 1)(x + 2)(x + 3) + 1$$
]

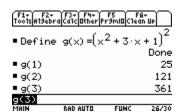
5. Use the **define(** function under **F4** to define f(x) as the expression in part (4). Verify that f(x) generates the expected numbers for integers from x = 1 to x = 5.



6. Now you will use the CAS engine to show that the answer will be a perfect square regardless of the integer chosen for x. Select the **expand(** function under **F2** to expand f(x), and then use the **factor(** function under **F2** to factor the resulting expression.



7. Define g(x) as the factored expression from part (6). Verify that g(x) generates the expected numbers for integers from x = 1 to x = 5.



- 8. Extensions:
- a) Does the pattern work for four consecutive negative integers?
- b) How about a mixture of positive and negative integers? Before trying examples on your calculator, do a little thinking, and predict the results. Then, use your calculator to verify the results.

Student Version:

Introduction: Patterns that occur in series of numbers can be determined with pencil and paper or the use of a simple calculator. However, CAS allows you to verify that your pattern will work for an infinite series. In this exercise, you will use your calculator to help you find a pattern, and then use CAS to show whether the pattern works regardless of the beginning number chosen.

1. Find the product of the integers from 1 to 4. Then, find the product of the integers 2 to 5. Continue, starting one integer higher each time, until you have five products. Display your results in a table.

Integers	Product
1×2×3×4	

2. Look for a pattern in your results. Ensure that each of your results matches the pattern. Then, continue for three more steps, and check the pattern.

(Hint: If you can't find a pattern, decode this message by replacing each letter with the one before it in the alphabet: "dpotjefs trvbsft pg ioufhfst"

Result	Pattern
1×2×3×4	

- 3. For the first term, the product is $1\times2\times3\times4$. Write an expression for the product of the x^{th} term.
- 4. Add 1 to this expression.
- 5. Use the **define(** function under **F4** to define f(x) as the expression in part (4). Verify that f(x) generates the expected numbers for integers from x = 1 to x = 5.
- 6. Now you will use the CAS engine to show that the answer will be a perfect square regardless of the integer chosen for *x*. Select the **expand(** function under **F2** to expand f(*x*), and then use the **factor(** function under **F2** to factor the resulting expression.

- 7. Define g(x) as the factored expression from part (6). Verify that g(x) generates the expected numbers for integers from x = 1 to x = 5.
- 8. Extensions:
- a) Does the pattern work for four consecutive negative integers?
- b) How about a mixture of positive and negative integers? Before trying examples on your calculator, do a little thinking, and predict the results. Then, use your calculator to verify the results.